Modified Model for Sacrificial Layer Etching
نویسندگان
چکیده
منابع مشابه
Silicon Sacrificial Layer Dry Etching (SSLDE) for free-standing
A novel Silicon Sacrificial Layer Dry Etching (SSLDE) technique using sputtered amorphous or LPCVD polycrystalline silicon as sacrificial layers and a dry fluorine-based (SF6) plasma chemistry as releasing process is reported with a detailed experimental study of the release etching step. The process is capable of various applications in surface micromachining process, and can be applied in fab...
متن کاملThree-Dimensional Sacrificial Etching
In MEMS fabrication micro-mechanical components have to be partially released from a substrate. Selectively etching away sacrificial layers, such that a free standing structure remains, is a widely used technique for this purpose. Free standing structures allow MEMS devices to induce or to sense mechanical movements or vibrations. During sacrificial etching lower etch rates than the blanket one...
متن کاملRapid Sacrificial Germanium Etching Using Xenon Difluoride
We present a novel micromachining procedure employing the noble gas halide, xenon difluoride (XeF2), to rapidly undercut a sacrificial layer comprised of low-temperature deposited amorphous germanium (α-Ge). As a proof of concept, this process is utilized to fabricate electrostatically-actuated suspended Bragg mirrors applicable to wavelength-tunable surface-normal photonic devices. Exploiting ...
متن کاملThree-dimensional simulation of sacrificial etching
Sacrificial etching is one of the most important process steps in micro-electro-mechanical systems technology, since it enables the generation of free-standing structures. These structures are often the main part of micro-mechanical devices, intended to sense or induce a mechanical movement. The etching process transforms an initial multi-segmented geometry and depends on material properties an...
متن کاملFabrication of suspended dielectric mirror structures via xenon difluoride etching of an amorphous germanium sacrificial layer
The authors present a simplified fabrication method for the creation of free-standing dielectric mirrors for use in monolithic wavelength tunable surface-normal photonic devices, including vertical-cavity surface emitting lasers. This process utilizes a nonplasma dry etching process, based on the noble gas halide, xenon difluoride XeF2 , to remove an inorganic sacrificial film comprised of low-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2006
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/34/1/081